Bayesian Inference in Marshall-Olkin Bivariate Exponential Shared Gamma Frailty Regression Model under Random Censoring

نویسندگان

  • David D. Hanagal
  • Richa Sharma
چکیده

Department of Statistics, University of Pune, Pune-411007, India. Email: david−[email protected]; richa−[email protected] Abstract Many analysis in epidemiological and prognostic studies and in studies of event history data require methods that allow for unobserved covariates or “frailties”. We consider the shared frailty model in the frame work of parametric proportional hazard model. There are certain assumptions about the distribution of frailty and baseline distribution. The exponential distribution is the commonly used distribution for analyzing lifetime data. In this paper, we consider shared gamma frailty model with bivariate exponential of Marshall-Olkin (1967) distribution as baseline hazard for bivariate survival times. We solve the inferential problem in a Bayesian framework with the help of a comprehensive simulation study and real data example. We fit the model to a real life bivariate survival data set of diabetic retinopathy data. We introduce Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in the proposed model and then compare the true values of the parameters with the estimated values for different sample sizes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Parameters for Bivariate Gompertz Regression Model with Shared Gamma Frailty under Random Censoring

In this paper, we consider shared gamma frailty model with Gompertz distribution as baseline hazard for bivariate survival times. The problem of analyzing and estimating parameters of bivariate Gompertz distribution with shared gamma frailty is of interest and the focus of this paper. We solve the inferential problem in a Bayesian framework with the help of a comprehensive simulation study. We ...

متن کامل

Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring

This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...

متن کامل

Analysis of diabetic retinopathy data using shared inverse Gaussian frailty model

The dependence between individuals in a group is modeled by the group specific quantity, which can be interpreted as an unobserved covariates or “frailties” common to the individuals in the group and assumed to follow some distribution. We consider the shared frailty model in the frame work of parametric Cox proportional hazard model. The Cox regression model with the shared frailty factor allo...

متن کامل

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

متن کامل

A bivariate Gompertz regression model with shared gamma frailty for censored data

The Gompertz distribution has many applications, particularly in medical and actuarial studies. However, there has been little recent work on the Gompertz in comparison with its early investigation. The problem of analyzing and estimating parameters of bivariate Gompertz distribution with shared frailty is of interest and the focus of this paper. We propose maximum likelihood estimation procedu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012